

Ejercicio 15

Dadas las siguientes sucesiones de números reales averiguar si son progresiones geométricas y, en caso afirmativo, hallar la razón y el término general:

a)
$$\frac{1}{4}$$
, $\frac{1}{2}$, 1, 2, 4...

a) El cociente entre un término y el anterior es r=2, luego se trata de la progresión geométrica de término general:

$$a_n = \frac{1}{4} \cdot r^{n-1};$$
 $a_n = \frac{1}{2^2} \cdot 2^{n-1} = 2^{-2} \cdot 2^{n-1} = 2^{n-3}$

b) El cociente entre un término y el anterior es r = -1, luego se trata de la progresión geométrica de término general:

$$a_n = 3 \cdot r^{n-1}; \quad a_n = 3 \cdot (-1)^{n-1}$$

c) El cociente entre un término y el anterior es r = 0'1, luego se trata de la progresión geométrica de término general:

$$a_n = 0'1 \cdot r^{n-1}; \quad a_n = 0'1 \cdot 0'1^{n-1} = 0'1^n$$

d) No es una progresión geométrica (es aritmética).

Ejercicio 16

Dadas las siguientes sucesiones de números reales averiguar si son PG y, en caso afirmativo, hallar la razón y el término general:

No es una PG

$$b) \quad \frac{1}{4}, 1, 4, 16, 64...$$

$$\frac{a_{n+1}}{a_n} = r = 4; \quad a_n = \frac{1}{4} \cdot 4^{n-1} = 4^{-1} \cdot 4^{n-1} = \boxed{4^{n-2}}$$

Sucesiones

Ejercicios de soluciones sin interpolación

c)
$$2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}$$
...

$$r = \frac{1}{3^{n-1}}; \quad a_n = \frac{2}{3^{n-1}}$$

$$d)$$
 2, $\frac{4}{3}$, $\frac{8}{9}$, $\frac{16}{27}$, $\frac{32}{81}$,...

c)
$$2, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}...$$
 $r = \frac{1}{3^{n-1}}; \quad a_n = \frac{2}{3^{n-1}}$
d) $2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \frac{32}{81},...$ $r = \frac{\frac{4}{3}}{2} = \frac{4}{6} = \frac{2}{3}; \quad a_n = 2 \cdot \left(\frac{2}{3}\right)^{n-1} = \frac{2^n}{3^{n-1}}$
e) $1, -2, 4, -8, 16...$ $a_n = (-1)^{n-1} \cdot 2^{n-1} = (-2)^{n-1}$

$$e)$$
 1, -2 , 4, -8 , 16...

$$a_n = (-1)^{n-1} \cdot 2^{n-1} = (-2)^{n-1}$$

No es geométrica (es aritmética)